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Abstract-This paper deals with shakedown problems of systems with linear kinematic hardening
material. Based on the fact that a system with linear kinematic hardening material can only fail
locally in the form of alternating plasticity, an analytical method for determining the shakedown
load factors was developed. First this method is derived in a general form and then applied to some
examples. Finally, the analytical results are compared with those obtained by other analytical and
numerical methods.

I. INTRODUCTION

Melan (1938a,b) formulated the static shakedown theorems for both perfectly plastic and
linear, unlimited kinematic hardening materials. Koiter (1956) introduced a kinematic
shakedown theorem for perfectly plastic materials which can be regarded as a dual one of
Melan's static theorem. Since then shakedown theorems dealing with temperature loading,
dynamic loading and geometrically nonlinear effects etc. have been elaborated by different
authors (Prager, 1956; Rozenblum, 1957; Ceradini, 1969; Konig, 1969; Maier, 1972;
Corradi and Maier, 1973; Weichert, 1986). The shakedown theorem for material with
nonlinear kinematic hardening has been formulated for the first time by Neal (1950), who
used the I-D Masing (1924) overlay model for describing the nonlinear kinematic behaviour
of materials. Neal's formulation is only valid for I-D stress state problems. Recently Stein
et al. (1992, 1993a,b) and Stein and Zhang (1992) used a 3-D overlay model to describe
the nonlinear hardening behaviour of materials. They also formulated the corresponding
shakedown theorem. Following that method, one can determine the failure mechanism of
a system under cyclic loadings. For instance, a system consisting of linear kinematic
hardening material fails only by alternating plasticity [see Stein et al. (1993)].

One purpose of shakedown investigations for a system is to find a maximum factor,
by which a given convex load domain is allowed to extend on the condition that the system
still shakes down, i.e. that the total plastic energy becomes stationary. In the context of
computational mechanics such a shakedown problem can be treated as an optimization
problem by using FEM. Generally, the dimension of the optimization problem via FEM is
very large; Mahnken (1992) and Zhang (1992) have used special numerical methods, namely
a dual method and a reduced base technique, to solve these problems. To avoid these
extensive computations, direct methods for determination of the shakedown load factors
were developed. Rozenblum (1958) suggested an approximate method, by which some
suitable field of residual stresses should be chosen. In general, this is not easy to do,
especially for systems with complicated geometries and boundary conditions. By using the
property that only alternating plasticity is relevant in the case of unlimited kinematic
hardening, Zarka et al. (1978) introduced a straightforward method for determining the
steady state of stresses and strains of a system, provided that the system shakes down, but
the shakedown as an optimization problem is not treated there.

In this work, the difference of the residual stress and the backstress is defined as the
effective residual stress, following Zarka et al. (1978). The property that a system with
linear kinematic hardening material only fails by alternating plasticity, has been used. Thus,
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a shakedown problem can be solved locally for some point in the system. For solving this
local optimization problem, an analytical method is developed. The advantage of this
method is that only the maximum effective elastic stress of the system has to be calculated,
and the shakedown load factor follows from an analytical form. In applying this method,
several typical shakedown problems are studied. The results are compared with those
obtained by using analytical and numerical methods.

2. SHAKEDOWN WITH LINEAR KINEMATIC HARDENING

For a system with linear kinematic hardening material, the shakedown problem can
be formulated as follows [see Stein (1993a)]:

P---+ max. (1)

(2)

where Pis the shakedown load factor which is to be found, l1> the von Mises yield function,
(1E the elastic stress vector, (10 the initial yield stress and f the set of all load vertices. The
effective residual stress y is defined by (Zarka et al., 1978; Jiang and Leckie, 1992)

y = p-IX. (3)

The optimization problem (1)-(2) has a very simple structure. It has been shown by
Stein et al. (1993a) that the maximum value of the load factor P, is determined by

P, = min (Ii'
ie..l

with (Ii being the solution of subproblem for the point Xi

Pi ---+ max

(4)

(5)

(6)

where J is the set of all points of the system.
The dimension of problem (5)-(6) is very low. The number of the unknowns is NSK + 1

with NSK being the number of stress components at point Xi' For 3-D problems the number
of unknowns is seven. The number of constraints is identical to the number of vertices of
the load domain.

By identifying the vector (- Yi) with the shift of the initial yield surface in the stress
space Y, the problem (5)-(6) can be described with the following geometrical interpret­
ation : find the maximum affine enlargement of elastic domain Y~ and the corresponding
shift ( - y;) of the yield surface on condition that the enlarged elastic domain PiY~ is still
contained in the shifted yield surface.

In view of the above interpretation, eqn (4) implies that for systems consisting of an
unlimited kinematic hardening material the shakedown load factor is determined by that
point Xi in the system where the maximum enlargement Pi of the elastic domain Y~ is the

p p p

smallest in comparison to all other points. Thus, P, = Pi holds. For a kinematic hardening
p

material the size and shape of the yield surface remain unchanged during the yielding, and
thus it is evident that the shakedown loads of systems consisting of unlimited kinematic
hardening material cannot be infinite as expected for monotone loading. The only exception
is that elastic domains 9'~, for all points of the system, are straight lines and coincide with
the diagonal in the space of principal stresses. This means that all elastic stresses (1E(X) are
hydrostatic. However, this case is almost meaningless in practice.
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3. ANALYTICAL DETERMINATION OF SHAKEDOWN LIMIT

According to the analysis in the last section the shakedown behaviour of a system with
linear kinematic hardening material is dominated by some point in the system, where the
maximum enlargement of the elastic domain is smallest in comparison to all other points.
If the number of the constraints-which is equal to the number of vertices of the load
domain-is small, it is possible to solve the optimization problem (5)-(6) analytically.

Let us consider a system in Fig. I subjected to the biaxial loadings PI and P2 which
may vary between zero and certain maximum magnitudes PI and P2 independently. The
maximum enlarging of the loading domain

o~P2 ~P2

has to be found on the condition that the system will shake down. The restriction to
four vertices of the load domain is caused by the complexity of the analytical solution.
Furthermore, most practical applications need only four vertices.

Assuming that the maximum effective stress would appear at some point in the system,
say point A, we need to solve the optimization problem

-/3 -+ min

<I>[/3(JE(j) +y] - O"~ ~ 0, j = 1,2,3,4

(7)

(8)

only for point A. (JE(j) denotes the elastic stress at point A for load vertexj.
Usually the stress at a point has six components. The problem (7)-(8) has therefore

seven unknowns /3, Yll, Y12, Y13, Y22' Y23 and Y33' If we work with principal stresses, (JE has
only three components, and the number of unknowns of problem (7)-(8) remains four.
For a plane stress problem it has only three unknowns. This reduction makes the problem
much simpler to solve.

For the simplicity of notation, we let O"T(2) (the first principal stress at load vertex 2)
be indicated by S12, O"T(3) by S13' O"T(4) by SI4 and so on. Furthermore, we assume that the
principal stress at load vertex 3 is a sum of the stresses from load vertex 2 and 4, i.e.

(9)

Usually there are nonlinear relations between principal stresses, unlike eqn (9), but we will
begin our analysis with the simplest case. Physically, it corresponds to a situation for which
the principal stresses at all load vertices have the same directions.

By the above arrangement we can express the principal stresses for point A by

P2

P2
4 3

PI
1 2

PI
PI

a) b)

Fig. I. (a) A system subjected to biaxial loadings PI and P2; (b) the load domain with four vertices.
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The solutions of problem (7)-(8) must satisfy the Kuhn-Tucker conditions, i.e.

8L 8L 8L 8L
8{3 = 0, 8y, = 0, 8Y2 = 0, 8Y3 = 0,

where L is the Lagrangian function, which is defined as

4

L({3,;',y) = -{3+ L Aj9j'
j~1

;. are the Lagrangian multipliers and 9j are given by

(10)

(11)

(12)

The conditions (10) are a nonlinear equation system with eight unknowns {3, Yh Y2, Y3,
A" A2, ,13 and A4, i.e.

,1292 = A2[({3S12 + Yl)2 + ({3Sn + Y2)2 + ({3S32 + Y3)2

- ({3S12 + YI)({3Sn + Y2) - ({3S22 + Y2)({3S32 + Y3)

- (PS12 + yd({3S32 + Y3) - 0"6] = 0,

,1393 = A3[({3S13 + YI)2 + (PS23 + Y2)2 + ({3S33 + Y3)2

- (PS 13 +YI )({3S23 + Y2) - (PS 23 + Y2)({3S33 + Y3)

- (PS13 + yd(PS33 +Y3) - 0"6] = 0,

,1494 = A4[({3S14 + YI)2 + (PS24 + Y2)2 + ({3S34 +Y3)2

- ({3S14 + Yl)({3S24 + Y2) - (PS 24 +Y2)(P S 34 + Y3)

-(PS14+y,)({3S34+Y3)-0"6] = 0.

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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At first, we assume that yield conditions at the first and third load vertex are not active,
this means

gl < 0 and g3 < O. (21)

It will be shown later whether this assumption is true or not. Due to eqns (17) and (19) one
has

(22)

Equations (13), (14), (15), (16), (18) and (20) remain to be solved for six unknowns, p, Yl'
Y2, Y3, A2 and A4' By doing some modifications of these equations and making use of the
program MACSYMA, which is capable of solving some mathematical problems symboli­
cally, we have solved this nonlinear equation system analytically. The shakedown load
factor reads

(23)

with C1 being a positive constant depending on the elastic stresses

C1 = ST2 -2S12S 14 +SI4 -S12S22 +SI4S22 +S~2 +S12S 24

-S14S24 -2S22S24 +S~4 -S12S 32 +SI4S 32 -S22S 32 +S24S 32

+ SL + S12S34 S14S34 + S22S34 - S24S34 - 2S32S 34 + S~4' (24)

The Lagrangian multipliers A2 and A4 are

(25)

and the quantities Yh Y2 and Y3 are

(26)

(27)

(28)

To check the correctness of the assumption (21), we substitute Yl> Y2 and Y3 in gl and g3,
and obtain

(29)

with

C2 = ST2 +2S12S 14 +SL -SI2S22 -SI4S22 +S~2 -S12S24

+S14S 24 +2S22S 24 +S~4 -S12S 32 -S14S 32 -S22S32 -S24S32

+S~2 -S12S 34 -SI4S34-S22S34-S24S34+2S32S34+S~4' (30)
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C2 is not negative.
By using eqn (23), eqn (29) becomes

(31 )

For C 1 > C2 , one gets

91 = 93 < 0,

such that the assumption (21) holds.
Until now all conditions in (10) have been satisfied for C\ > C2• Once elastic stresses

for all load vertices are known, the shakedown load factor {3 follows immediately from eqn
(23).

For the case of C1 < C2 , we have solved the equation system analogously. The shake­
down load factor reads

{3 = 2CJo

.jC;'

where C2 is already defined in eqn (30). The Lagrangian multipliers are

Quantities Yb Y2 and Y3 remain unchanged.
For C 1 = C2 , the shakedown load factor is

with

C3 = sL +Si4 -S12S22+S~2-S14S24 +S~4

- S12S 32 - S22S32 + S~2 - SI4S 34 - S24S34 + S~4

> O.

(32)

(33)

(34)

(35)

(36)

YI, Y2 and Y3 are the same as in eqns (26), (27) and (28), and the Lagrangian multipliers
are

By putting {3, YI' Y2 and Y3 into 91,92,93 and 94, we obtain

91 = 92 = 93 = 94 = O.

(37)

(38)

It means that the yield conditions at all load vertices are active.
Constants C1, C2 and C3 cannot be zero, unless all stress components are hydrostatic,

but this case is of no importance.
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If the load domain has only two vertices, the solution for the shakedown limit factor
is much simpler; it reads

(J = 2(Jo 2(Jo

J siz +S~z+sL -SIZS22 -S22S32 -S12S32 (Jeff

(39)

The denominator of the right-hand side of eqn (39) is the effective stress of the second load
vertex. Let (Jeff equal the initial yield stress (Jo, then the shakedown load factor is equal to
two. This means that in this situation the shakedown limit of a system is twice as large as
its elastic limit. This statement is not true for a load domain with more than two vertices.

For the general case that

(40)

the solutions are more complicated. We give the results without going into mathematical
details of the analysis process. There are six possible solutions for the shakedown load
factor; they are

(41)

(42)

with K j , Kz, K 3 , K4 , Ks and K6 being positive constants which will be given in the Appendix.
The correct shakedown load factor of the system is the smallest one of them, i.e.

(43)

Now we summarize all steps of the introduced analytical method as follows.
(I) Calculate the elastic stresses for all load vertices.
(2) Locate the position of the point with maximum effective stress.
(3) Compare the principal stresses of this point. If they fulfill the condition (9), one

gets the shakedown load factor (J by eqn (23), or (32), or (35), depending on the values of
C I and Cz. Otherwise (J follows from eqn (43).

The correctness of the analytical solutions was checked several times and approved by
some known analytical solutions as special cases.

4. EXAMPLES

In this section we apply the above analytical method to some examples and then
compare the results with those obtained by other methods, so far as available.

Example I
A square plate with a central hole is subjected to biaxial loadings PI and pz as shown

in Fig. 2. Loadings PI and pz may vary cyclically between zero and certain maximum
magnitudes PI> Pz· For PI > Pz, the point A dominates the shakedown behaviour of the
system.

The elastic stress components at point A are
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P2

•

PI

+

D

P2
+

PI L

1
Fig. 2. A square plate with a central hole.

(JA I and (JA, stand for elastic stresses at A caused by PI and P2' respectively. The other stress
components vanish in this case. Equations (24) and (30) yield

Because (J A
2

is negative for this example, one has

According to eqn (23) the shakedown load factor is

Normally (JAI and (JA, must be calculated by using a numerical method, e.g. using FEM
or BEM. If the plate is infinite, that means D/L --+ 0, one gets

For this case the shakedown diagram is shown in Fig. 3.

0.25 3h + f2. = 2
"0 "0

0.5

0.0
0.0 0.25

h +3'& = 2
(10 D'D

0.5

Fig. 3. The shakedown diagram for an infinite plate with a hole.
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Fig. 4. A compact tension specimen with notch.

Example 2
A compact tension specimen with notch in Fig. 4 is subjected to an uniaxial loading p

which varies between 0 and I kN. Obviously, the point A at the notch surface dominates
the shakedown behaviour of the system.

In this case the shakedown load factor is given simply by

with (1A being the elastic stress at point A, which can be calculated numerically. In this
work, however, we use an analytical form suggested by Paris and Sih (1965)

where K j is the stress intensity factor calculated from linear fracture mechanics as if the
notch would be a crack, and r is the notch root radius. The compact tension specimen with
crack has been studied very intensively in fracture mechanics. For the stress intensity factor
there exist analytical results [see Murakami (1987)J.

Five different values ofnotch root radius are used to obtain a wide range ofshakedown
limits. For (10 = 24 kN cm- 2

, Table I shows the results of shakedown load factors, Pa
denotes the analytical shakedown load factors and Pn the results obtained by using numerical
optimization [see Stein et al. (1993a)].

Table I. The shakedown limits

r 0.1
r 0.2
r 0.3
r 0.4
r 0.5

1.5275
1.9410
2.1884
2.4084
2.5380

1.6638
2.0432
2.2201
2.4268
2.5774



2442 E. Stein and Y. Huang

Example 3
A hollow cylinder of inner and outer radii b and a, respectively, is subjected to an

internal pressure. The pressure may vary cyclically between 0 and p. For this configuration
we have analytical solutions for the elastic stresses

where v is the Poisson ratio.
The maximum stresses are located at the inner boundary; they are

The maximum effective stress is

According to eqn (39) the shakedown load factor is

and the maximum pressure Ps at which the cylinder will shake down is

Konig (1987) used another method to solve the same problem. In his work the residual
stresses are directly constructed. The Tresca linear yielding function is used, and the
influence of the axial stress (J z is neglected. His result for maximum shakedown load is

By neglecting the term (bja)4(l-2v)2, one gets the relation between the maximum shake­
down loads of these two methods

5. CONCLUSIONS

A mechanical system consisting ofelastic-plastic material subjected to cylically varying
loadings behaves in a complicated manner. One of the possible system responses is that the
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system reaches first an elastic-plastic state, and after a certain number of loading cycles
(loading and unloading) the residual stresses become stationary. With the corresponding
load domain the system shakes down.

Optimization problems derived from shakedown theory by using finite element dis­
cretizations are generally of large dimensions. To treat these problems effectively, special
algorithms must be used. Taking the advantage that a system consisting of linear kinematic
hardening material fails only locally in the form ofalternating plasticity, an analytic method
was developed to solve these shakedown problems. So far, the method is valid both for 2­
D and 3-D problems, as long as the number of the load domain vertices is not larger than
four. In practice the loading domain has usually two or four vertices. Three examples are
studied by using the analytical method. There are no difficulties to determine shakedown
load factors for other engineering problems with this method.

Though the method is formulated for systems with linear kinematic hardening
materials, the results obtained here could be surely references for those with nonlinear
hardening materials, as well as for systems with cyclic hardening materials.
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APPENDIX: CONSTANTS IN EQUAnONS (41) AND (42)

The constants K" K2, K], K4, K, and K6 in eqns (41) and (42) are dependent on the elastic stresses. They are
defined by
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Kz = 4S~2 -4S12S 13 + Si3 -4S1ZS Z2 +2S13S22 +4S~2 +2SIZS23 -S13 SZ3 -4S22S23 + S~, -4S12S32

+2S13S31 -4SZ2S32+2S23S31 +4S~2 +2S12S33-SI3S33+2S22S33-S23Sjj -4S32 S33 + S~3' (A.2)

K, = 5~3 -45, 3S)4 +4Sj4 -513 SZ3 +25145 23 +5i3 +25135 24 -45145 z4 -45z3 5 z4 +4S~4 - S1353J

+25145 33 - 523 5 33 +2524 5 33 +5~3 +25135 34 -45145 34 +2523 5 34 -45245 34 ~45jj534 +45~4' (A.3)

K4 = 5iz - 25'2S 14 + 5i4 -5125 22 + 514522+S~2 + 5\2S24 -S145Z4 -2822 5 24 + 5~4 -5,z531 + 8 14532

- 5 22 532 + 5 245 31 + 5~2 +5125 34 -5'4534 + 5 225 34 - 5 245 34 - 2531S34 + 5~4'

Ks = Siz +28'2SI4 + Sj4 -5125 22 -5)45 22 +5~2 -5125 z4 - 5 145 z4 +25z2 5 24 +S~4 -SI2S)1-5'4S32

- S22S32 - S24S31 + S~2 - S, 2S34 - SI4S34 -S22S34 - S24S34 +2S31S 34 +sL,

(A.4)

(A.S)

K6 = Si2 -4SI2SI3+4~3 +2S12S14 -4S'3S 14 +Si4 -S12S22 +25'3Sn- S '4S22 +5~2 +2S12S23

~4S13S23 +2S14S23 -4S22S 23 +4S~3 - SI2S24 +2S13 SZ4 -SI4S24 + 2Sn S24 -4S23S24 +S~4 -S, 2S32

+2S13S31 -SI4S32 -522531+2S23S32-S24S31+ S~2 +2S,z533 -45'3533+25'48jj+2SnSJ] -4823 S33

+2824833 -48328 33 +48~3 -812 S34 + 2S13 S34 -814834 -822S 34 +2S23 S 34 ~S24S34 +2S32S34 -4SJ3 S34 +S~4'

(A.6)


